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a b s t r a c t

In this paper, we investigate the event-based model predictive control (MPC) for constrained nonlinear
systems with dynamic disturbance. An event-triggered disturbance prediction MPC (DPMPC) scheme
and a self-triggered counterpart, which explicitly consider the disturbance dynamics, are proposed. For
the event-triggered DPMPC scheme, the triggering condition relying on the state prediction error and
the predicted disturbance sequence, updates at each time step based on the system states. For the self-
triggered DPMPC scheme, the next triggering instant is determined by using the optimal state sequence
and predicted disturbance sequence. In both event-based schemes, the optimal control problems are
solved only at triggering instants, thus reducing the consumption of computational resource. The
effectiveness of the two schemes is demonstrated by a simulation example.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Model predictive control (MPC) is an advanced technique in
chieving high control performance while explicitly considering
he system constraints (Rawlings, Mayne, & Diehl, 2017). There-
ore, it attracts much attention in recent years and has found
pplication in diverse fields such as process control (Griffith,
iegler, & Patwardhan, 2018), transportation systems (Ye et al.,
019), and automotive systems (Cheng, Li, Guo, Chen, & Song,
019). However, the major drawback of the MPC approaches is
he heavy computational burden induced by the optimal control
roblem (OCP), hindering their usage in practical systems. An
ffective remedy is integrating with event-based control tech-
iques, e.g., event-triggered control and self-triggered control, in
rder to save the computational resource.
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National Natural Science Foundation of China under Grant 62103394, Grant
62173317, and Grant 62033012, and in part by the Project funded by China
Postdoctoral Science Foundation under Grant 2020M682036. The material in
this paper was not presented at any conference. This paper was recommended
for publication in revised form by Associate Editor Marcello Farina under the
direction of Editor Ian R. Petersen.
∗ Corresponding author at: Department of Automation, University of Science
nd Technology of China, Hefei, 230027, China.
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bzhao@ustc.edu.cn (Y.-B. Zhao).
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005-1098/© 2022 Elsevier Ltd. All rights reserved.
By now there exist a great amount of works investigating the
event-triggered and self-triggered MPC aiming at enlarging the
triggering interval (Hashimoto, Adachi, & Dimarogonas, 2017; Liu,
Gao, Li, & Xu, 2018; Sun, Xia, Dai, & Campoy, 2020; Wang, Sun, &
Chen, 2019). For the event-triggered MPC, a state-related trigger-
ing condition is implemented at the sensor side and is checked
at each time step. Only when the condition is contravened, the
controller updates the state information and solves the OCP to
yield the control sequence. Therefore, the triggering condition
is vital to saving computational resource. One type of typical
triggering conditions is derived from the deviation between the
actual state and the predicted one in order to ensure the recursive
feasibility, see, e.g., Hashimoto et al. (2017), Liu et al. (2018), Sun
et al. (2020), Wang et al. (2019). Another type is derived from
perspective of stability, through guaranteeing the decrement of
Lyapunov function (Hashimoto, Adachi, & Dimarogonas, 2015;
He & Shi, 2015; Zou, Su, Li, Niu, & Li, 2019). It is noted that
the implementation of an event-triggered mechanism requires
periodic or continuous monitoring system states, aggravating the
sensing cost. To address this issue, self-triggered MPC is proposed
via simultaneously solving the OCP and determining the next
triggering instant. Similar to the event-triggered ones, the trig-
gering instants are determined from the view of feasibility (Cui
& Li, 2022), stability (Eqtami, Heshmati-Alamdari, Dimarogonas,
& Kyriakopoulos, 2013) or both (Li, Kang, Zhao, & Wang, 2021;
Sun, Dai, Liu, Dimarogonas, & Xia, 2019). However, the triggering
instants of the event are predicted by using the worst case of
the disturbance, resulting in a more conservative result than the
event-triggered one.
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Observed from the triggering conditions in Cui and Li (2022),
Hashimoto et al. (2017), Liu et al. (2018), Sun et al. (2020), Wang
et al. (2019), the triggering frequency is susceptible to the state
prediction precision. In fact, the state prediction error between
the actual state and the predicted one is resulted from the distur-
bance. Hence, existing works try to make use of extra disturbance
information to improve the prediction precision. One widely used
methodology is to make use of the disturbance rejection tech-
nique to suppress disturbance. Specifically, Incremona, Ferrara,
and Magni (2017) and Rubagotti, Raimondo, Ferrara, and Magni
(2011) adopted the integral sliding-mode control to compensate
matched disturbance, reducing the uncertainty of the prediction
model. Sun, Xia, Dai, Liu, and Ma (2017) employed the distur-
bance observer and a feed-forward control law to estimate and
compensate the uncertainties. Another effective routine, known
as disturbance prediction technique, involves integrating the pre-
dicted disturbance into the prediction model to reduce the state
error. For example, Li et al. (2021) and Lin and Görges (2020)
considered slowly varying disturbance and took advantage of the
disturbance change rate to generate the predicted disturbance
sequence. Yoo and Johansson (2021) established the relationship
between disturbance, control inputs and system states by statisti-
cal learning method, and based on which generated the predicted
disturbance sequence.

In this paper, we focus on both the event-triggered and self-
triggered MPC for discrete-time nonlinear systems subject to
additive disturbance. Different from the conventional bounded
disturbance, the one considered here is described by a dynamical
model that relies on the system states and disturbance. This
modeling provides a more accurate description of system un-
certainties, and thus has potential benefits in achieving the aim
of improving prediction precision. However, such problem set-
tings pose unique challenges to designing the event-based MPC
schemes. First, how to formulate the state-dependent dynamic
disturbance in the OCP. Second, how to explicitly analyze the
state prediction error under the novel designed OCP. Third, how
to design the triggering condition to lower the triggering fre-
quency while ensuring recursive feasibility and stability.

To solve the above challenges, we propose event-triggered
and self-triggered disturbance prediction MPC (DPMPC). The pre-
dicted disturbance sequence is generated by employing the latest
obtained predicted state sequence and actual disturbance. The
state and disturbance prediction errors are analyzed simultane-
ously via the state extension method. Both the event-triggering
and the self-triggering conditions are designed by taking advan-
tage of the predicted state with high precision. As a result, the
triggering frequency is significantly reduced. Furthermore, the re-
cursive feasibility of both DPMPC schemes and the input-to-state
stability (ISS) of the closed-loop systems are guaranteed.

The main contributions are summarized as follows:

1. A recursive disturbance prediction approach is proposed
and the corresponding prediction error is explicitly ana-
lyzed.

2. A novel constraint tightening method that takes the state
prediction error and the disturbance prediction error into
consideration is developed to ensure state constraint satis-
faction.

3. The event-triggering condition relying on the predicted dis-
turbance sequence and the self-triggering condition relying
on the disturbance learning error are designed, and the
recursive feasibility and stability are ensured.

The structure of this paper is as follows. Section 2 describes
the plant model, disturbance model, and related assumptions.
Sections 3 and 4 propose and analyze the event-triggered and
 b

2

self-triggered DPMPC schemes, respectively. Section 5 shows the
simulation results. Section 6 concludes this paper.

Notations. The symbols R and Rn refer to the real numbers
set and n-dimensional real space. For a vector x ∈ Rn, xT , ∥x∥2
nd ∥x∥P denote its transpose, its Euclidean norm and P-weighted
orm, respectively. Given a square matrix Q ∈ Rn×n, λmax(Q ) and

λmin(Q ) are its maximum and minimum eigenvalue, respectively.
iven two nonempty sets X and Y, the Minkowski addition set

is defined by X ⊕ Y ≜ {x + y|x ∈ X, y ∈ Y}, and the Pontryagin
difference set is by X ⊖ Y ≜ {x : x + y ∈ X,∀y ∈ Y}. Given a
compact set W, the projection operator is defined by ProjW(x) =
argminz∈W ∥x− z∥2P . Note that x = ProjW(x), ∀x ∈ W.

2. System descriptions

In this paper, the considered discrete-time nonlinear systems
have the following form:

x(k+ 1) = f (x(k), u(k))+ w(k), (1)

here x ∈ X ⊆ Rn, u ∈ U ⊆ Rm and w ∈ W ⊆ Rn represent the
ystem state, control input and disturbance, respectively, sets X
nd U are compact sets and satisfy 0 ∈ X and 0 ∈ U. W is also a
ompact set and satisfies ∥w∥P ≤ w̄, ∀w ∈ W.
In particular, suppose that the state-dependent disturbance w

volves according to the following dynamics

(k+ 1) = g(w(k), x(k))+ v(k), (2)

here g is a continuous function that can be determined by
earning techniques, v can be regarded as the learning error and
atisfies ∥v∥P ≤ v̄. In practice, it is reasonable to assume that
¯ ≤ w̄. Such representation of disturbance is quite general, and
an be used to characterize various modeling uncertainties and
xterior perturbations.
Before proceeding, we make the following assumption.

ssumption 1. The plant model (1) and the disturbance model
2) are Lipschitz continuous in their arguments, i.e., there exist
onstants Lf , Lw and Lx such that

∥f (x, u)− f (y, u)∥P ≤Lf ∥x− y∥P (3)

g(w, x)− g(ω, y)∥P ≤Lw∥w − ω∥P + Lx∥x− y∥P (4)

or all (x, y, w, ω, u) ∈ X× X×W×W× U.

emark 1. The Lipschitz assumption in (4) can be satisfied
or many disturbance dynamics. For example, Yi, Zheng, and
iu (2022) provide three typical types of disturbance dynam-
cs, i.e., attenuated harmonic disturbance, sawtooth wave dis-
urbance, and white noise disturbance. Since these disturbance
ynamics are represented by Lipschitz continuous exogenous
ynamic neural network models in that work, the Lipschitz con-
tants can then be identified.

emark 2. Various approaches, e.g., statistical learning (Yoo &
ohansson, 2021), deep learning (Chen, Cao, Kang, Sun, & Wang,
020), system identification (Kaheman, Brunton, & Kutz, 2020),
an be adopted to learn the function g . To meet the Lipschitz
ontinuous assumption (4), additional modifications should be
ade. For example, a deep neural network is used to learn g
ith Lipschitz constants in Shi et al. (2019) by adding an extra
ipschitz constraint into the learning error minimization problem.

The aim of this paper is to design event-based MPC schemes
o reduce the consumption of computational resources as much
s possible by making use of the disturbance prediction on the
asis of dynamics (2).
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emark 3. State extension is a common used method to exploit
the disturbance dynamics (2) in designing the prediction model,
i.e., let ζ (k) = [xT (k), wT (k)]T and then use both the plant model
(1) and the nominal disturbance dynamics (2) to serve as the
prediction models (El-Ferik, 2020). However, such a method may
face challenges as the expression of g , which depends on the
adopted learning method, can be extremely complex and may not
be smooth, dramatically increasing the difficulty in solving the
optimization problem. Moreover, the extended state ζ (k) doubles
the dimension of decision variables, leading to high computa-
tional complexity. Therefore, a new method that explicitly ex-
ploits the disturbance dynamics (2) in formulating the OCP while
possessing low computational complexity should be proposed.

3. Event-triggered DPMPC

In this section, an event-triggered DPMPC scheme is proposed,
the recursive feasibility and stability are discussed.

3.1. Optimal control problem

For an event-based MPC scheme, the OCP is solved only at each
triggering instant kj (the jth triggering instant) to generate the
optimal control and state sequence. For ease of representation,
we directly give the form of the OCP in what follows. Note that
x̂i(kj) and ui(kj) represent the state and input prediction i steps
ahead from time kj, respectively.

min
u

VN (x(kj),u(kj))

s.t. x̂i+1(kj) = f (x̂i(kj), ui(kj))+ w̄i(kj)

x̂0(kj) = x(kj) (5)
x̂i(kj) ∈ X(i)
∥x̂i(kj)− x̄i(kj)∥P ≤ α

ui(kj) ∈ U, i = 1, . . . ,N − 1
x̂N (kj) ∈ Xf

where VN (x(kj),u(kj)) =
∑N−1

i=0 ∥x̂i(kj)∥
2
Q +∥ui(kj)∥2R+∥x̂N (kj)∥

2
P is

the MPC value function, N is the prediction horizon, P,Q , R are
all positive definite matrices, Xf is the terminal state constraint
set, w̄i(kj) is the (i + 1)th element of the predicted disturbance
sequence w̄(kj) generated at time kj, X(i) is a tightened state
constraint set, x̄i(kj) is defined in (6), and α > 0 is a design
parameter related to the feasibility.

Once the OCP (5) is solved at kj, the optimal state and con-
trol sequences are denoted by x̂∗(kj) = {x̂∗0(kj), . . . , x̂

∗

N (kj)} and
u∗(kj) = {u∗0(kj), . . . , u

∗

N−1(kj)}, respectively. Moreover, the opti-
mal MPC value function is then denoted by

V ∗N (x(kj)) =
N−1∑
i=0

∥x̂∗i (kj)∥
2
Q + ∥u

∗

i (kj)∥
2
R + ∥x̂

∗

N (kj)∥
2
P

In the following parts, we will describe the design approach
of the predicted disturbance sequence w̄(k) and determine the
related sets as well as the parameters of the OCP (5).

3.1.1. Determination of w̄(k)
It is known that a more accurate model representation of the

system dynamics in MPC often implies high prediction precision.
Due to this fact, we added a predicted disturbance generated
by the disturbance dynamics (2) in the prediction model. Such
a model, compared with the nominal counterpart, has a greater
potential to reduce the state prediction error, leading to a lower
triggering frequency.
 g

3

The construction procedure of sequence w̄(k), k > kj is
designed recursively as follows:⎧⎪⎪⎨⎪⎪⎩

x̄i(k) = f (x̄i−1(k), ūi−1(k))+ w̄i−1(k)

ūi(k) =
{
ũi+1(k− 1), i = 1, . . . ,N − 2
κ(x̄N−1(k)), i = N − 1

w̄i(k) = ProjW
(
g(w̄i−1(k), x̄i−1(k))

)
x̄N (k) = f (x̄N−1(k), κ(x̄N−1(k)))+ w̄N−1(k)

(6)

where ũi+1(k − 1) =
{
u∗i+1(kj), if k = kj + 1
ūi+1(k− 1), if k > kj + 1

, x̄0(k) = x(k),

ū0(k) =
{
u∗1(kj), if k = kj + 1
ū1(k− 1), if k > kj + 1

, and w̄0(k) = ProjW(g(w(k −

), x(k − 1))). κ(x) is an auxiliary control law designed below.
It is noteworthy that w(k − 1) is available at time k because
(k − 1) = x(k) − f (x(k − 1), u(k − 1)). Since g(w, x) may not
e in set W although w ∈ W and x ∈ X, we use the projection
perator ProjW(.) here to guarantee w̄i(k) ∈ W, i = 0, . . . ,N − 1.
Observe that from the construction procedure (6), we can

enerate the sequences w̄(k) = {w̄0(k), . . . , w̄N−1(k)}, x̄(k) =
x̄0(k), . . . , x̄N (k)}, ū(k) = {ū0(k), . . . , ūN−1(k)}, ∀k > kj, simul-
aneously.

The following lemma indicates the error of the predicted dis-
urbance and the states between two consecutive time steps.

emma 1. Denote ēw(i) = ∥w̄i(k) − w̄i+1(k − 1)∥P and ēx(i) =
∥x̄i(k)− x̂∗i+1(kj)∥P , if k = kj + 1
∥x̄i(k)− x̄i+1(k− 1)∥P , if k > kj + 1

, where i = 0, . . . ,N − 1,

hen the following inequality holds[
ēx(i)
ēw(i)

]
≤

[
Lf 1
Lx Lw

]i [
v̄

Lw v̄

]
+ Γ (α, i) (7)

here Γ (α, i) =
∑i−1

s=0

[
Lf 1
Lx Lw

]s [
0
Lxα

]
.

roof. See Appendix A.

emark 4. In min–max MPC scheme, all possible disturbance
equences are considered to ensure the control constraint and
he control actions are obtained by minimizing the worst-case
erformance cost (Raimondo, Limon, Lazar, Magni, & ndez Ca-
acho, 2009). In contrast, the DPMPC in (5) only considers a

ikely disturbance sequence to minimize the performance cost.
herefore, the proposed DPMPC has the advantage of less conser-
ativeness (i.e., DPMPC has a larger feasible solution space) and
ower computational overhead.

.1.2. Design of X(i) and Xf
The tightened constraint set X(i) is designed for state con-

traint satisfaction and terminal constraint set Xf is designed for
easibility and stability.

Based on Lemma 1, X(i) can be designed as

(i) = X⊖ B(i), i = 1, . . . ,N − 1
B(i) ≜

{
e : ∥e∥P ≤ Ξ (i)

} (8)

here Ξ (i) =
[
1 0

]∑i−1
s=0

{[
Lf 1
Lx Lw

]s [
v̄

Lw v̄

]
+ Γ (α, s)

}
.

The following lemma shows that the true state constraint
atisfaction can be guaranteed under the designed X(i).

emma 2. Suppose that the elements in u∗(kj) are applied to the
lant in turn during kj and kj+1, then the constraint x̂i(kj) ∈ X(i)

uarantees x(k) ∈ X, ∀k ∈ (kj, kj+1].
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roof. See Appendix B.

Next, we design the terminal state constraint set Xf . Similar to
he one in Sun et al. (2019), Xf is defined as Xf ≜ {x : ∥x∥P ≤ ϵf }.
esides, the parameters P , Q , R, ϵf should meet the following
tandard conditions.

ssumption 2. There exists an auxiliary constraint set Xa with
he form of Xa = {x : ∥x∥P ≤ ϵa} and an auxiliary control law
(x) : Xa → U, such that

1. Xf ⊆ Xa ⊆ X(N − 1);
2. f (x, κ(x))+ w ∈ Xf , ∀x ∈ Xa, w ∈ W;
3. ∥f (x, κ(x))∥2P − ∥x∥

2
P ≤ −∥x∥

2
Q − ∥κ(x)∥

2
R, ∀x ∈ Xa.

Remark 5. The above assumption is rather standard. Condition
(1) and (3), which are useful in ensuring recursive feasibility and
stability, respectively, can be found in Rawlings et al. (2017), Sun
et al. (2019). Note that from condition (3), one further obtains

∥f (x, κ(x))+ w∥2P − ∥x∥
2
P

≤∥f (x, κ(x))∥2P − ∥x∥
2
P + w̄2

+ 2f (x, κ(x))TPw

≤− ∥x∥2Q − ∥κ(x)∥
2
R + w̄2

+ 2ϵf w̄. (9)

Let ρ(w̄) = w̄2
+2ϵf w̄, which is a class K function. This equation is

useful in proving the ISS property. Condition (2) gives a restriction
on disturbance, that is,

w̄ < ϵa −max
x∈Xa
∥f (x, κ(x))∥P (10)

which guarantees the existence of the terminal set Xf .

3.2. Event-triggering condition and recursive feasibility

In this part, an event-triggering condition for guaranteeing the
recursive feasibility is proposed. The result is demonstrated in the
following theorem.

Theorem 1. Suppose that the system state and disturbance evolve
according to (1) and (2), respectively. Then OCP (5) is recursively
feasible if (10) as well as the following inequality holds[
1 0

] ([Lf 1
Lx Lw

]N [
0
v̄

]
+ Γ (α,N − 1)

)
≤ ϵa − ϵf , (11)

and the event-triggering condition is design as

kj+1 = inf
k

{
k :

N−2∑
s=0

Lsf ∥w̄N−2−s(k)− w̄N−1−s(k− 1)∥P

+ LN−1f ∥x(k)− x̃(k)∥P ≥ ϵa − ϵf

}
(12)

where x̃(k) =
{
x̂∗1(kj), if k = kj + 1
x̄1(k− 1), if k > kj + 1

.

Proof. To prove this theorem, we show that the generated
sequences ū(k) and x̄(k) in (6) meet all constraints in OCP (5)
for kj < k ≤ kj+1. To be specific, we assume that ū(k − 1) and
x̄(k − 1) are feasible solutions (This is true for k = kj + 1 since
ū(k− 1) and x̄(k− 1) become u∗(kj) and x̂∗(kj), respectively), and
then prove ū(k) and x̄(k) are also feasible. It should be indicated
that the constraint ∥x̂i(kj)− x̄i(kj)∥P ≤ α in (5) can be met for all
α > 0. The proof can be completed from four aspects.

1. x̄i(k) ∈ X(i), i = 1, . . . ,N − 2. To verify this result, we first
note that ∥x̄i(k)∥P ≤ ∥x̄i+1(k− 1)∥P + ēx(i). Then, based on
(7) and (8), it holds that

x̄ (k) ∈X⊖ B(i+ 1)
i e

4

⊕
[
1 0

] ([Lf 1
Lx Lw

]i [
v̄

Lw v̄

]
+ Γ (α, i)

)
∈X⊖ B(i) = X(i)

2. x̄N−1(k) ∈ X(N − 1). First, one notes that ∥x̄N−1(k)− x̄N (k−
1)∥P ≤

∑N−2
s=0 Lsf ∥w̄N−2−s(k)−w̄N−1−s(k−1)∥P+LN−1f ∥x(k)−

x̄1(k − 1)∥P holds. Recalling that x̄N (k − 1) ∈ Xf and
the event-triggering condition (12), we have ∥x̄N−1(k)∥P ≤
∥x̄N (k− 1)∥P + ∥x̄N−1(k)− x̄N (k− 1)∥P ≤ ϵf + ϵa − ϵf = ϵa.
That is x̄N−1(k) ∈ Xa ⊆ X(N − 1).

3. x̄N (k) ∈ Xf . Notice that (10) implies that condition (2) in
Assumption 2 holds. Then, according to this condition, we
directly have x̄N (k) ∈ Xf .

4. ūi(k) ∈ U, i = 0, . . . ,N − 1. Firstly, according to the
definition of ūi(k) in (6), we directly have ūi(k) ∈ U, i =
0, . . . ,N − 2. In addition, since x̄N−1(k) ∈ Xa, the control
constraint satisfaction can be easily guaranteed due to the
definition of control law κ in Assumption 2.

For the sake of brevity, the above proof only considers the case
hen k > kj+1. Actually, when k = kj+1, the same result can be
btained by a similar procedure where x̂∗i (kj) and u∗i (kj) are used
nstead of x̄i(k− 1) and ūi(k− 1).

Summarizing the above statements, we show that ū(k) is a
easible solution to OCP (5) with k = kj+1 (kj+1 ≤ kj+1 ≤ kj+N).
his completes the proof.

In triggering condition (12), the predicted disturbance se-
uences at two consecutive time steps are utilized, which seems
o bring conservativeness for the event-triggered mechanism.
ut it is not the case in practice as the state prediction error
n (7) has been significantly reduced. To be specific, one has
x̄N−1(k)−x̄N (k−1)∥P ≤ Lif w̄ under the conventional MPC scheme.
herefore, if w̄ (the upper bound of disturbance) and v̄ (the upper
ound of learning error) satisfy

1 0
] ([Lf 1

Lx Lw

]N−1 [
v̄

Lw v̄

]
+ Γ (α,N − 1)

)
≤ LN−1w w̄,

hen the event-triggering condition in (12) has less conserva-
iveness. This inequality can be easily satisfied as the inequality
¯ ≪ w̄ often holds by using the existing learning methods. Note
hat Γ (α,N − 1) in the above inequality is neglected as α can be
elected arbitrarily small. Therefore, we claim that the proposed
riggering condition is particularly suitable for the case when the
earning error v̄ is far less than w̄.

emark 6. The proposed event-triggering condition in this sec-
ion is distinct from the conventional conditions (Hashimoto
t al., 2017; Wang et al., 2019) in three aspects. Firstly, the pre-
icted disturbance sequences are utilized in the event-triggering
ondition (12) to guarantee the recursive feasibility of the DPMPC
cheme. Secondly, the event-triggering condition (12) is updated
t each time step by generating the feasible predicted state
equence x̄(k), which enables to enlarge the triggering interval.
hirdly, the constraint that the interval between two consecu-
ive triggering instants should be no larger than the prediction
orizon has been removed.

The event-triggered DPMPC scheme is summarized in Algo-
ithm 1.

.3. Stability analysis

In this part, we discuss the stability of the system under the

vent-triggered DPMPC scheme.
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Algorithm 1 Event-Triggered DPMPC

1: while (1) do
2: Measure the current system state x(k);
3: Generate w̄(k), x̄(k) and ū(k) based on (6);
4: if condition (12) is triggered then
5: Update the triggering instant j← j+ 1; kj ← k;
6: Solve OCP (5) to obtain u∗(kj) and x̂∗(kj);
7: Apply the control action u∗0(kj) to the plant;
8: else
9: Apply the control action ū0(k) to the plant;
0: end if
1: Update the time instant k← k+ 1;

12: end while

Theorem 2. For system (1) under Algorithm 1, suppose that
ssumptions 1 and 2 hold, then the overall system is ISS, i.e., there

exist β ∈ KL and σ ∈ K such that

∥x(k)∥ ≤ β(∥x(k0)∥, k− k0)+ σ (w̄) (13)

Proof. As indicated in Pin and Parisini (2011), we need to find an
ISS-type Lyapunov function to verify the input-to-state stability,
i.e., there exists a positive definite function J(·) : X → R such
that the following inequalities hold

α1(x) ≤ J(x) ≤α2(x)+ ρ(w̄), (14)

J(f (x, u)+ w)− J(x) ≤− α3(x)+ γ (w̄),∀x ∈ X (15)

where α1, α2, α3 are class K∞ functions and ρ, γ are class K
functions.

In what follows, we need to show the following function is an
ISS-type Lyapunov function.

JN (x(k)) =
{
V ∗N (x(kj)), if k = kj
VN (x(k)), if kj < k < kj+1

(16)

where VN (x(k)) =
∑N−1

i=0 ∥x̄i(k)∥
2
Q + ∥ūi(k)∥2R + ∥x̄N (k)∥

2
P .

Firstly, note that

JN (x(k)) ≥ α1(x(k)) ≜ ∥x(k)∥2Q ,∀x ∈ X (17)

Then, following Theorem 3 in Magni, Raimondo, and Scattolini
(2006), we can obtain the following inequality, with ρ(w̄) being
defined in Remark 5,

JN (x(k)) ≤ ∥x(k)∥2P + Nρ(w̄),∀x ∈ Xa (18)

by repeatedly using Condition 3 in Assumption 2. By using the
technique reported in Rubagotti et al. (2011, Lemma 4), we can
extend the upper bound (18) to X, i.e., there exist two functions
α2 ∈ K∞ and ρ̄ ∈ K such that JN (x(k)) ≤ α2(x(k)) + ρ̄(w̄) for
x ∈ X.

Next, we need to show (15) is satisfied for JN (x(k)).
If k = kj+1 − 1, we have V ∗N (x(kj+1)) ≤ VN (x(kj+1)) because

ū(kj+1) is a feasible solution. Therefore, for any k ∈ [kj, kj+1), one
has

JN (x(k+ 1))− JN (x(k))
≤VN (x(k+ 1))− VN (x(k))

≤− ∥x(k)∥2Q +
N−2∑
i=0

(∥x̄i(k+ 1)∥2Q − ∥x̄i+1(k)∥
2
Q )

+ ∥x̄N−1(k+ 1)∥2Q + ∥ūN−1(k+ 1)∥2R
+ ∥x̄N (k+ 1)∥2P − ∥x̄N (k)∥

2
P

≤− ∥x(k)∥2Q +
N−2∑

LQ∥x̄i(k+ 1)− x̄i+1(k)∥P

i=0

5

+ LP∥x̄N−1(k+ 1)− x̄N (k)∥P + ρ(w̄)

≤− α3(x(k))+ γ (w̄) (19)

here LQ and LP are constants that satisfy ∥x∥2Q − ∥y∥
2
Q ≤

Q∥x − y∥Q , ∀x, y ∈ X and ∥x∥2P − ∥y∥
2
P ≤ LP∥x − y∥P , ∀x, y ∈

a, γ (w̄) = LP
[
1 0

] ([Lf 1
Lx Lw

]N−1 [
w̄

Lww̄

]
+ Γ (α,N − 1)

)
+

Q

√
λmax(Q )
λmin(P)

[
1 0

]∑N−2
i=0

([Lf 1
Lx Lw

]i [
w̄

Lww̄

]
+ Γ (α, i)

)
+ ρ(w̄).

Notice that the above inequality still holds for the case k = kj
by using x̂∗i (kj) to replace x̄i(k).

Incorporating the above statements, we show that JN (x) is an
ISS-type Lyapunov function, which implies the ISS of the overall
system.

4. Self-triggered DPMPC

In this section, we develop a self-triggered DPMPC scheme
to compute the optimal predictive control and state sequences
and determine the next triggering instant simultaneously. Com-
pared with the event-triggered counterpart, the actual states
during two consecutive triggering instants are not available in the
self-triggered DPMPC scheme. Therefore, the disturbance predic-
tion technique in (6) should be modified and the self-triggering
condition cannot be directly derived from the event-triggering
condition (12).

In what follows, we first modify the disturbance prediction
technique and then derive the self-triggering condition to formu-
late the self-triggered DPMPC scheme.

The predicted disturbance sequence at kj+1 is constructed
based on the optimal control sequence u∗(kj). The construction
rocedure is shown as follows.⎧⎪⎪⎨⎪⎪⎩
x̄i(kj+1) = f (x̄i−1(kj+1), ūi−1(kj+1))+ w̄i−1(kj+1)

ūi(kj+1) =
{
ūi+∆j (kj), i = 1, . . . ,N −∆j − 1
κ(x̄i(kj+1)), i = N −∆j, . . . ,N − 1

w̄i(kj+1) = ProjW
(
g(w̄i−1(kj+1), x̄i−1(kj+1))

)
¯N (kj+1) = f (x̄N−1(kj+1), κ(x̄N−1(kj+1)))+ w̄N−1(kj+1)

(20)

here ∆j = kj+1 − kj, x̄0(kj) = x(kj), ū0(kj+1) = u∗∆j
(kj), and

¯ 0(kj+1) = ProjW
(
g(w(kj+1 − 1), x(kj+1 − 1))

)
.

Note that this procedure, in contrast to the one (6) in event-
riggered DPMPC scheme, is performed only at each triggering
nstant. To obtain w̄0(kj+1), extra sampling of the system state
efore the triggering instant (i.e., x(kj+1 − 1)) is needed.
Next, we follow the idea of Sun et al. (2019) to design the self-

riggered DPMPC scheme from recursive feasibility and control
erformance. The sub-optimal performance, defined in Sun et al.
2019), is
∆j

k=0

∥x̂∗i (kj)∥
2
Q + ∥u

∗

i (kj)∥
2
R ≤

V ∗N (x(kj+1))− V ∗N (x(kj))
β

with β < 1 will be satisfied.
It is noted that in this self-triggered DPMPC scheme, the for-

mulation of the OCP and its relevant parameters are the same as
the ones designed in (5).

The following theorem validates the recursive feasibility of the
DPMPC with the designed self-triggering condition.

Theorem 3. Suppose that the system state and disturbance evolve
according to (1) and (2), respectively. Then OCP (5) is recursively
feasible if (10) and (11) hold, and the self-triggering condition is
design as

¯ } (21)
kj+1 =min{kj + N, rj+1, r j+1
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r̄j+1 = sup
k

{
k :

N−1∑
s=N−(k−kj)

[
1 0

] [Lf 1
Lx Lw

]s [
v̄

Lw v̄

]

+ Γ (α,N − 1) ≤ ϵa − ϵf

}
(22)

r j+1 = sup
k

{
k :

N−1∑
i=k−kj

[
2

√
λmax(Q )
λmin(P)

∥x̂∗i (kj)∥Qh(i)

+
λmax(Q )
λmin(P)

h2(i)
]
+ (ϵa + ϵf )h(N)

≤ (1− β)
k−kj−1∑
i=0

(
∥x̂∗i (kj)∥

2
Q + ∥u

∗

i (kj)∥
2
R

)}
(23)

where h(l) =
[
1 0

] (∑k−kj−1
s=0

[
Lf 1
Lx Lw

]s+l−k+kj [
v̄

Lw v̄

]
+ Γ (α,

l− 1)
)
.

To prove this theorem, we need the following lemma.

Lemma 3. Considering the sequences x̄(kj+1), ū(kj+1) and w̄(kj+1)
onstructed according to (20) and denoting ξ̄x(i) ≜ ∥x̄i(kj+1) −
ˆ∗i+∆j

(kj)∥P , ξ̄w(i) ≜ ∥w̄i(kj+1) − w̄i+∆j (kj)∥P , ξx(i) ≜ ∥x(kj + i) −
x̂∗i (kj)∥P and ξw(i) ≜ ∥w(kj+ i)− w̄i(kj)∥P , the following inequalities
hold for 0 ≤ i ≤ N −∆j.[

ξ̄x(i)
ξ̄w(i)

]
≤

∆j−1∑
s=0

[
Lf 1
Lx Lw

]s+i [
v̄

Lw v̄

]
+ Γ (α, i+∆j − 1) (24)

Proof. See Appendix C

The proof of Theorem 3: Recalling the sequences x̄(kj+1) and
ū(kj+1) constructed by (20), this proof can be completed by fol-
lowing the same lines of the logic given in Theorem 1 within the
following four steps. In particular,

1. x̄i(kj+1) ∈ X(i), i = 1, . . . ,N − ∆j. To verify this result,
we observe that ∥x̄i(kj+1)∥P ≤ ∥x̂∗i+∆j

(kj)∥P + ∥x̄i(kj+1) −
x̂∗i+∆j

(kj)∥P . Note that

i+∆j−1∑
s=0

[
Lf 1
Lx Lw

]s [
v̄

Lw v̄

]
−

i−1∑
s=0

[
Lf 1
Lx Lw

]s [
v̄

Lw v̄

]

=

∆j−1∑
s=0

[
Lf 1
Lx Lw

]s+i [
v̄

Lw v̄

]
(25)

and
i+∆j−1∑
s=0

Γ (α, s)− Γ (α, i+∆j − 1) ≥
i−1∑
s=0

Γ (α, s) (26)

Then, based on (25) and (26), we can verify that

x̄i(kj+1) ∈X⊖ B(i+∆j)⊕
[
1 0

] (
Γ (α, i+∆j − 1)

+

∆j−1∑
s=0

[
Lf 1
Lx Lw

]s+i [
v̄

Lw v̄

])
∈X⊖ B(i) = X(i)

2. x̄i(kj+1) ∈ X(i), i = N −∆j + 1, . . . ,N − 1. To validate this
claim, we need to show from the triggering condition (21)
that x̄N−∆j+1(kj+1) ∈ Xa. In fact, ∥x̄N−∆j+1(kj+1)∥P ≤
∥x̂∗ (k )∥ + ξ̄ (N − ∆ + 1) ≤ ϵ +

∑∆j−1 [1 0
]

N j P x j f s=0

6

[
Lf 1
Lx Lw

]N−∆j+s+1 [
v̄

Lw v̄

]
≤ ϵf + ϵa − ϵf = ϵa, which

implies x̄N−∆j+1(kj+1) ∈ Xa. Incorporating the construction
procedure (20) and Assumption 2, one has x̄i(kj+1) ∈ Xa ⊆

X(i), ∀i ≥ N −∆j + 1.
3. x̄N (kj+1) ∈ Xf . According to condition (2) in Assumption 2,

we directly verify this claim.
4. ūi(kj+1) ∈ U, i = 0, . . . ,N−1. This claim can be verified by

the same argument of the control constraint satisfaction in
Theorem 1.

his completes the proof. ■
The self-triggered DPMPC scheme is summarized in

lgorithm 2.

Algorithm 2 Self-Triggered DPMPC

1: while (1) do
2: if k = kj then
3: Measure x(kj) and generate w̄(kj) based on (20);
4: Solve OCP (5) to obtain u∗(kj) and x̂∗(kj);
5: Set j← j+1 and determine the next triggering instant

kj according to (21);
6: Apply the control action u∗0(kj) to the plant;
7: else if k = kj+1 − 1 then
8: Measure the system state x(k);
9: Apply the control action u∗k−kj (kj) to the plant;
0: else
1: Apply the control action u∗k−kj (kj) to the plant;
2: end if
3: Update the time instant k← k+ 1;
4: end while

Finally, we present the stability result for the system under
the self-triggered DPMPC algorithm. As the proof is similar to
Theorem 2 in Sun et al. (2019), it is omitted for simplicity.

Theorem 4. For system (1) under Algorithm 2, suppose that
Assumptions 1 and 2 hold, then the overall system is ISS and the
suboptimal performance is guaranteed.

Remark 7. Note that if the dual-mode strategy is adopted as
in Sun et al. (2019), i.e., the self-triggered DPMPC is adopted only
when x ∈ X \ Xf and the auxiliary controller law κ is adopted
when x ∈ Xf , then it can be verified that the state starts from set
X \ Xf will enter Xf in finite time and never leave Xf .

5. Simulation example

The attitude regulation problem of a three-DOF helicopter
model is discussed in this section to exhibit the effectiveness
of the event-triggered and self-triggered DPMPC schemes. The
continuous-time system dynamic is given by Yan, Le, and Wang
(2016)

ẋ1 = x2 + w1

ẋ2 = p1 cos x1 + p2 sin x1 + p3x2 + p4(u1 + u2) cos x3 + w2

˙3 = x4 + w3

˙4 = p5 cos x3 + p6 sin x3 + p7x4 + p8(u1 − u2)+ w4

here the states x1, x2, x3, x4 represent the elevation angle, the
elevation rate, the pitch angle and the pitch angle rate, respec-
tively, the inputs u1 and u2 represent the voltages applied to
he front and back motor, respectively. w = [w1, w2, w3, w4]

T

epresents the external disturbance. The system constraints are
iven by X = {x : −6 ≤ x ≤ 6,−3 ≤ x ≤ 3,−4 ≤ x ≤
1 2 3
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Table 1
Parameters description.
Symbols Description Value

Mf Mass of the front section 0.95
Mb Mass of the back section 0.95
Mc Mass of the count-weight 2.21
Ld Length of pendulum for the elevation axis 0.08
Lc Distance from the pivot point to count-weight 0.52
La Distance from the pivot point to helicopter body 0.65
Lε Length of pendulum for pitch axis 0.2
Lh Distance from pitch axis to either motor 0.28
g Gravitational acceleration 9.81
Jε Moment of inertia about elevation axis 1.2
Jθ Moment of inertia about pitch axis 0.08
ηe Coefficient of viscous friction about elevation axis 0.001
ηθ Coefficient of viscous friction about pitch axis 0.001

4,−3 ≤ x4 ≤ 3} and U = {u : −3 ≤ u1 ≤ 7,−3 ≤ u2 ≤ 7}. The
coefficients pi, i = 1, . . . , p8 and their specific physical meanings
are shown below

p1 = [−(Mf +Mb)gLa +McgLc]/Jε
p2 = [−(Mf +Mb)gLa tan δa +McgLc tan δc]/Jε
3 = −ηe/Jε, p4 = KmLa/Jε, p5 = (−Mf +Mb)gLh/Jθ
6 = −(Mf +Mb)gLh tan δh/Jθ , p7 = −ηθ/Jθ ,

8 = KmLh/Jθ , δa = tan−1((Ld + Lε)/La)

δc = tan−1(Ld/Lc), δh = tan−1(Lε/Lh)

ith the relevant parameters given in Table 1.
The equilibrium of the system is xe = [−0.62, 0, 0, 0]T , ue

=

0.89, 0.89]T . Then, the discrete-time system can be obtained by
efining x̃ = [x1, x2, x3, x4]T − xe, u = [u1, u2]

T
− ue and by

dopting the forward-Euler discretized method with sampling
eriod Ts = 0.2s. Assume that w is the attenuated harmonic
isturbance, a most common type of disturbance in aerospace
ystems (Yi et al., 2022), and has the following simple form,

(k+ 1) = Aw(k)+ g(x(k))w(k)+ v(k)

here

=

⎡⎢⎣0 0 0 0
0 0.85 0 −0.52
0 0 0 0
0 0.38 0 0.76

⎤⎥⎦ , g(x(k)) =

⎡⎢⎣ 0
0.2x2(k)

0
0.2x4(k)

⎤⎥⎦ ,

= [0, v2, 0, v4]
T is the learning error with v̄ = 0.0007, and the

nitial disturbance is set as w(0) = [0, 0.01, 0,−0.01]T . It can be
erified by simulation that the disturbance constraint set satisfies
= {w : ∥w∥P ≤ 0.0312}.
Firstly, we set the related parameters of the proposed event-

riggered DPMPC (Algorithm 1) as follows. The prediction hori-
on is N = 9. The weighted matrices are designed as Q =
iag(1, 1, 1, 1), R = 0.05diag(1, 1),

=

⎡⎢⎣11.2168 3.8259 0 0
3.8259 6.2817 0 0

0 0 9.9572 1.6724
0 0 1.6724 1.9888

⎤⎥⎦
he Lipschitz constants are Lf = 1.4502, Lx = 0.0024 and
w = 1.1246. The parameters of the terminal set Xf and the
uxiliary set Xa are ϵf = 1.4627 and ϵa = 1.5395, respectively.
he auxiliary controller is designed as

(x̃) =
[
−1.6360 −3.9255 0.2514 −1.4419
−1.6360 −3.9255 −0.2514 1.4419

]
x̃

hich meets Assumption 2. We also set α = 0.2 in OCP (5).
o illustrate the effectiveness of Algorithm 1, we compare our
7

Fig. 1. Disturbance evolution under Algorithm 1.

results with the conventional event-triggered MPC in Hashimoto
et al. (2017) where the nominal system serves as the prediction
model, ϵ′f = 1.4315, and time-varying horizon N(k) ≡ 11.
The simulation results are shown in Figs. 1–4, respectively. The
disturbance w2 and w4 under Algorithm 1 is shown in Fig. 1. One
can also observe from Figs. 2 and 3 that the system constraints
are satisfied under both MPC schemes. Notice that the abrupt
change of the control signal obtained by Algorithm 1 is caused
by the switching from the MPC-based controller to the auxiliary
controller (The triggering interval is larger than N). It can be
seen from Fig. 4 that Algorithm 1 and ETMPC in Hashimoto
et al. (2017) are triggered 11 and 25 times, respectively, which
presents a significant reduction of the triggering frequency. Such
profit mainly comes from the disturbance prediction technique,
the update of the triggering condition at each time step and the
cancel of the constraint that the triggering interval should be no
greater than prediction horizon N .

Secondly, we present the effectiveness of the self-triggered
DPMPC scheme (Algorithm 2). Note that the self-triggered scheme
is much more conservative than the event-triggered one. In this
case, we set the bound of the learning error as v̄ = 0.0002. The
simulation results are also shown in Figs. 2–4. It can be seen
that periodic triggering occurs after 4s because condition (23)
is always transgressed. For this case, we can simply use the
auxiliary controller κ(x) instead of the MPC scheme to reduce the
consumption of the computational resource.

6. Conclusion

Two event-based DPMPC schemes have been proposed for
constrained nonlinear systems with additive dynamic distur-
bance. It has been demonstrated that the predicted disturbance
sequence generated by utilizing the disturbance dynamics en-
ables to improve the state prediction precision, hence enlarging
the triggering interval and lowering the consumption of compu-
tational resource. A numerical example shows that the triggering
frequency has been significantly lowered by the proposed event-
triggered and self-triggered DPMPC schemes. Further investiga-
tions will focus on its implementation and application to practical

systems.
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Fig. 2. State evolution under three different event-based MPC algorithms.
k

e

a

e

Fig. 3. Control signal obtained by three different event-based MPC algorithms.

Appendix A

For a start, we analyze ēx(0) and ēw(0). According to their
definitions, disturbance dynamics (2) and the fact ∥ProjW(x) −
ProjW(y)∥ ≤ ∥x−y∥ (Bertsekas, 2003, Proposition 2.2.1), we have

ēx(0) = ∥x(k)− x̄1(k− 1)∥P
≤ ∥ f (x(k− 1), ū0(k− 1))+ w(k− 1)

− f (x(k− 1), ū0(k− 1))+ w̄0(k− 1) ∥P≤ v̄ (27)

and

ēw(0) = ∥w̄0(k)− w̄1(k− 1)∥P
≤ ∥g(w(k− 1), x(k− 1))− g(w̄0(k− 1), x(k− 1))∥P
≤ Lw∥w(k− 1)− w̄0(k− 1)∥ ≤ Lw v̄ (28)
 r

8

Fig. 4. Triggering instants under three different event-based MPC algorithms.

In what follows, we derive ēx(i) and ēw(i) with i ≥ 1. When
= kj + 1, recalling the recursive process in (6) obtains

¯x(i) = ∥x̄i(k)− x̂∗i+1(kj)∥P
= ∥ f (x̄i−1(k), ūi−1(k))+ w̄i−1(k)− f (x̂∗i (kj), u

∗

i (kj))
− w̄i(kj) ∥P

≤ Lf ēx(i− 1)+ ēw(i− 1) (29)

nd

¯w(i) = ∥w̄i(k)− w̄i+1(kj)∥P
≤ ∥ g(w̄i−1(k), x̄i−1(k))− g(w̄i(k− 1), x̂∗i (kj))
+ g(w̄i(k− 1), x̂∗i (kj))− g(w̄i(k− 1), x̄i(kj)) ∥P

≤ Lxēx(i− 1)+ Lw ēw(i− 1)+ Lxα (30)

When k > kj+1, the above two inequalities can be derived by
eplacing x̂∗(k ) and u∗(k ) with x̄ (k−1) and ū (k−1), respectively.
i j i j i i
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ote that for this case, (29) still holds while (30) becomes

¯w(i) ≤ Lxēx(i− 1)+ Lw ēw(i− 1)

Combining the above two cases yields[
ēx(i)
ēw(i)

]
≤

[
Lf 1
Lx Lw

][
ēx(i− 1)
ēw(i− 1)

]
+

[
0
Lxα

]
. (31)

hen, (7) can be easily verified.

ppendix B

To complete the proof, we first need to discuss the prediction
rror of the state and the disturbance, i.e., ex(i) ≜ ∥x(k+i)−x̄i(k)∥P
nd ew(i) ≜ ∥w(k + i) − w̄i(k)∥, i = 0, . . . ,N − 1. The analysis
ethod follows closely along the lines of Lemma 1. To be specific,
e have

x(i) = ∥x(k+ i)− x̄i(k)∥P
= ∥ f (x(k+ i− 1), ūi−1(k))+ w(k+ i− 1)
− f (x̄i−1(k), ūi−1(k))− w̄i−1(k) ∥P

≤ Lf ex(i− 1)+ ew(i− 1) (32)

and

ew(i) = ∥w(k+ i)− w̄i(k)∥P
≤ ∥ g(w(k+ i− 1), x(k+ i− 1))+ v(k+ i− 1)
− g(w̄i−1(k), x̄i−1(k)) ∥P

≤ Lxex(i− 1)+ Lwew(i− 1)+ v̄ (33)

Note that ex(0) = 0 and ew(0) = v̄. Then the above two
inequalities can be written in the following vector form[
ex(i)
ew(i)

]
≤

[
Lf 1
Lx Lw

][
ex(i− 1)
ew(i− 1)

]
+

[
0
v̄

]
≤

i∑
s=0

[
Lf 1
Lx Lw

]s [
0
v̄

]
. (34)

In the remaining part of the proof, we show that x(k) ∈
X,∀k > kj as long as x̄k−kj (kj) ∈ X(k − kj). Let i = k − kj, we
have

∥x(kj + i)∥P ≤ ∥x̄i(kj)∥P +
[
1 0

] i∑
s=0

[
Lf 1
Lx Lw

]s [
0
v̄

]

= ∥x̄i(kj)∥P +
[
1 0

] i−1∑
s=0

[
Lf 1
Lx Lw

]s [
v̄

Lw v̄

]
Since x̄i(kj) ∈ X(i), thus

x(k) ∈ X⊖ B(i)⊕
[
1 0

] i−1∑
s=0

[
Lf 1
Lx Lw

]s [
v̄

Lw v̄

]
∈ X.

This completes the proof.

Appendix C

According to the definition, one has

ξ̄x(i) = ∥ f (x̄i−1(kj+1), u∗i+∆j−1(kj))+ w̄i−1(kj+1)

− f (x̂∗i+∆j−1(kj), u
∗

i+∆j−1(kj))− w̄i+∆j−1(kj) ∥P

≤Lf ξ̄x(i− 1)+ ξ̄w(i− 1) (35)

and

ξ̄ (i) ≤ ∥ g(w̄ (k ), x̄ (k ))
w i−1 j+1 i−1 j+1

9

− g(w̄i+∆j−1(kj), x̄i+∆j−1(kj)) ∥P
≤ Lw ξ̄w(i− 1)+ Lx∥x̄i−1(kj+1)− x̄i+∆j−1(kj)∥P
≤ Lw ξ̄w(i− 1)+ Lxξ̄x(i− 1)+ Lxα (36)

Note that

ξ̄x(0) =∥x(kj+1)− x̂∗∆j
(kj)∥P

= ∥ f (x(kj+1 − 1), u∗∆j−1(kj))+ w(kj+1 − 1)

− f (x̂∗∆j−1(kj), u
∗

∆j−1(kj))+ w̄∆j−1(kj) ∥P

≤Lf ξx(∆j − 1)+ ξw(∆j − 1) (37)

and

ξ̄w(0) ≤ ∥ g(w(kj+1 − 1), x(kj+1 − 1))
− g(w̄∆j−1(kj), x̄∆j−1(kj)) ∥P

≤ Lwξw(∆j − 1)+ Lxξx(∆j − 1)+ Lxα (38)

Incorporating the above equations, one can iteratively obtain[
ξ̄x(i)
ξ̄w(i)

]
≤

[
Lf 1
Lx Lw

]i [
ξ̄x(0)
ξ̄w(0)

]
+

i−1∑
s=0

[
Lf 1
Lx Lw

]s [
0
Lxα

]

≤

[
Lf 1
Lx Lw

]i+1 [
ξx(∆j − 1)
ξw(∆j − 1)

]
+

i∑
s=0

[
Lf 1
Lx Lw

]s [
0
Lxα

]
(39)

Similar to (35) and (36), we have

x(i) = ∥ f (x(kj + i− 1), u∗i−1(kj))+ w(kj + i− 1)
− f (x̂∗i−1(kj), u

∗

i−1(kj))+ w̄i−1(kj) ∥P
≤Lf ξx(i− 1)+ ξw(i− 1) (40)

and

ξw(i) ≤ ∥ g(w(kj + i− 1), x(kj + i− 1))+ v(kj + i− 1)
− g(w̄i−1(kj), x̄i−1(kj)) ∥P

≤ Lwξw(i− 1)+ Lxξx(i− 1)+ Lxα + v̄ (41)

t should be note that

w(1) ≤ ∥g(w(kj), x(kj))+ v(kj)− g(w̄0(kj), x̄0(kj))∥P
≤ Lwξw(0)+ Lxξx(0)+ v̄ (42)

nd ξw(0) = v̄ and ξx(0) = 0; Similarly, from (40) to (42), we
ave[
ξx(i)
ξw(i)

]
≤

i∑
s=0

[
Lf 1
Lx Lw

]s [
0
v̄

]
+

i−2∑
s=0

[
Lf 1
Lx Lw

]s [
0
Lxα

]
(43)

Substituting (43) into (39) easily obtains the results of
emma 3. This completes the proof.
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